Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms

Autor: Valeria Maffeis, Lina Carvalho, Giuseppe Pelosi, Deborah Marchiori, Fiorella Calabrese, Véronique Hofman, Gabriella Nesi, Myriam Remmelink, Fausto Sessa, Irene Stacchiotti, Angela De Palma, Salma Naheed, Jasna Metovic, Linda Pattini, Giuseppe Marulli, Silvia Uccella, Christian H. Ottensmeier, Giada Sandrini, Federico Rea, Gabriella Serio, Izidor Kern, Roberta Maragliano, Paul Hofman, Massimo Barberis, Eugenio Maiorano, Matteo Bulloni, Antonio Pennella, Ambrogio Fassina, Gabriella Fontanini, Federica Pezzuto, Mauro Papotti, Francesco Fortarezza, Eleonora Pisa, Senia Trabucco, Andrea Marzullo, Greta Alì
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Lung neuroendocrine neoplasms
Cancer Research
Ki-67
histopathology
lung cancer
lung neuroendocrine neoplasms
machine learning
prognosis
whole-slide image
Spatial organisation
carcinoma
Ki-67 antigen
nevroendokrine novotvorbe
RC254-282
biology
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
Sciences bio-médicales et agricoles
Prognosis
Subtyping
medicine.anatomical_structure
Oncology
Lung cancer
Histopathology
Machine learning
Whole-slide image
izboljšava slike
Computational biology
lung neoplasms
pljučni rak
Article
prognoza
histology
medicine
Proliferation Marker
image enhancement
Grading (tumors)
udc:616-006
Lung
neuroendocrine neoplasms
pljučne novotvorbe
antigen Ki-67
karcinom
medicine.disease
patologija
strojno učenje
Cancérologie
histologija
nevroendokrini tumorji
Whole slide image
biology.protein
pathology
neuroendocrine tumors
Zdroj: Cancers, Vol 13, Iss 4875, p 4875 (2021)
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Cancers
Volume 13
Issue 19
Cancers, vol. 13, no. 19, pp. 1-19, 2021.
Cancers (Basel), 13 (19
CANCERS
ISSN: 2072-6694
Popis: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome. Subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. Here, we propose a machine learning framework for tumour prognosis assessment based on a quantitative, automated and repeatable evaluation of the spatial distribution of cells immunohistochemically positive for the proliferation marker Ki-67, performed on the entire extent of high-resolution whole slide images. Combining features from the fields of graph theory, fractality analysis, stochastic geometry and information theory, we describe the topology of replicating cells and predict prognosis in a histology-independent way. We demonstrate how our approach outperforms the well-recognised prognostic role of Ki-67 Labelling Index on a multi-centre dataset comprising the most controversial lung NENs. Moreover, we show that our system identifies arrangement patterns in the cells positive for Ki-67 that appear independently of tumour subtyping. Strikingly, the subset of these features whose presence is also independent of the value of the Labelling Index and the density of Ki-67-positive cells prove to be especially relevant in discerning prognostic classes. These findings disclose a possible path for the future of grading and classification of NENs.
SCOPUS: ar.j
info:eu-repo/semantics/published
Databáze: OpenAIRE