A new LBP histogram selection score for color texture classification
Autor: | Mariam Kalakech, Nicolas Vandenbroucke, Denis Hamad, Alice Porebski |
---|---|
Přispěvatelé: | Laboratoire d'Informatique Signal et Image de la Côte d'Opale (LISIC), Université du Littoral Côte d'Opale (ULCO) |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Local binary patterns
Color normalization business.industry Supervised learning ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Histogram matching 020207 software engineering Pattern recognition Context (language use) 02 engineering and technology ComputingMethodologies_PATTERNRECOGNITION Discriminant Computer Science::Computer Vision and Pattern Recognition Histogram [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Computer vision Artificial intelligence business Image histogram ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA) 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA), Nov 2015, Orleans, France. pp.242-247, ⟨10.1109/IPTA.2015.7367138⟩ IPTA |
DOI: | 10.1109/IPTA.2015.7367138⟩ |
Popis: | This paper presents and compares a new adapted version of the Laplacian score used to select LBP histogram for color texture classification. During a supervised learning stage, we first compute a similarity matrix between images using the true class labels of these images. Then, a score is attributed to each histogram. This score allows to measure the capability of the histogram of preserving the similarity matrix. The histograms are then ranked according to the proposed score and the most discriminant ones are selected. Experiments are achieved on benchmark color texture image databases in order to show the interest of the proposed score for histogram selection. |
Databáze: | OpenAIRE |
Externí odkaz: |