Debye screening for the stationary Vlasov-Poisson equation in interaction with a point charge
Autor: | Raphael Winter, Adolfo Arroyo-Rabasa |
---|---|
Přispěvatelé: | Department of Mathematics, University of Warwick, Warwick Mathematics Institute (WMI), University of Warwick [Coventry]-University of Warwick [Coventry], UMPA, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon), Winter, Raphael |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Point particle
FOS: Physical sciences [MATH] Mathematics [math] 01 natural sciences symbols.namesake Mathematics - Analysis of PDEs Physics::Plasma Physics [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] FOS: Mathematics [MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] 0101 mathematics [MATH]Mathematics [math] Mathematical Physics Debye length Debye Mathematics Applied Mathematics 010102 general mathematics Plasma Mathematical Physics (math-ph) 3. Good health 010101 applied mathematics Nonlinear system Quantum electrodynamics Physics::Space Physics symbols Poisson's equation Stationary solution Analysis Analysis of PDEs (math.AP) 82B05 |
Popis: | We prove that the Debye screening length emerges in a spatially homogeneous plasma described by the nonlinear Vlasov-Poisson equation interacting with a point charge. While screened stationary states as well as the time-dependent problem are well-studied for the linearized equation, there are few rigorous results on screening in the nonlinear setting. As such, the results presented here cover the stationary case under the assumptions predicted by the linearized theory. |
Databáze: | OpenAIRE |
Externí odkaz: |