Estrogen Receptor (ER)-α36 Is Involved in Estrogen- and Tamoxifen-Induced Neuroprotective Effects in Ischemic Stroke Models

Autor: Chen Fang, Xiao-Feng Liang, Wei Zou, Hongyan Li, Jinqiu Liu, Yang Liu, Qi-Qi Zhang, Jing Liu, Liang Huang, Yejun Zhang, Xiaofei Ji, Chao Han
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: PLoS ONE
PLoS ONE, Vol 10, Iss 10, p e0140660 (2015)
ISSN: 1932-6203
Popis: The neuroprotection by estrogen (E2) and tamoxifen is well documented in experimental stroke models; however, the exact mechanism is unclear. A membrane-based estrogen receptor, ER-α36, has been identified. Postmenopausal-levels of E2 act through ER-α36 to induce osteoclast apoptosis due to a prolonged activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) signaling. We hypothesized that ER-α36 may play a role in the neuroprotective activities of estrogen and tamoxifen. Here, we studied ER-α36 expression in the brain, as well as its neuroprotective effects against oxygen and glucose deprivation (OGD) in PC12 cells. We found that ER-α36 was expressed in both rat and human brain. In addition, OGD-induced cell death was prevented by l nmol/L 17β-estradiol (E2β). E2β activates the MAPK/ERK signaling pathway in PC12 cells under basal and OGD conditions by interacting with ER-α36 and also induces ER-α36 expression. Low-dose of tamoxifen up-regulated ER-α36 expression and enhanced neuronal survival in an ovariectomized ischemic stroke model. Furthermore, low-dose of tamoxifen enhanced neuroprotective effects by modulating activates or suppress ER-α36. Our results thus demonstrated that ER-α36 is involved in neuroprotective activities mediated by both estrogen and tamoxifen.
Databáze: OpenAIRE