Pioneers of Influence Propagation in Social Networks

Autor: Holger Paul Keeler, Kumar Gaurav, Bartlomiej Blaszczyszyn
Přispěvatelé: Dynamics of Geometric Networks (DYOGENE), Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria), Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratory of Information, Network and Communication Sciences (LINCS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT), Zhipeng Cai, Alex Zelikovsky, Anu Bourgeois, Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Inria Paris-Rocquencourt, Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Rok vydání: 2013
Předmět:
FOS: Computer and information sciences
Physics - Physics and Society
Theoretical computer science
Discrete Mathematics (cs.DM)
Computer science
FOS: Physical sciences
Context (language use)
02 engineering and technology
Physics and Society (physics.soc-ph)
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Poisson distribution
symbols.namesake
[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI]
Viral marketing
0502 economics and business
0202 electrical engineering
electronic engineering
information engineering

050207 economics
Random graph
Social and Information Networks (cs.SI)
Social graph
Degree (graph theory)
05 social sciences
Transmitter
020206 networking & telecommunications
Computer Science - Social and Information Networks
Degree distribution
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
symbols
Computer Science - Discrete Mathematics
Zdroj: COCOON/CSoNet
COCOON/CSoNet, Aug 2014, Atlanta, United States. pp.626-636, ⟨10.1007/978-3-319-08783-2_54⟩
Lecture Notes in Computer Science ISBN: 9783319087825
COCOON
DOI: 10.48550/arxiv.1310.2441
Popis: International audience; With the growing importance of corporate viral marketing campaigns on online social networks, the interest in studies of influence propagation through networks is higher than ever. In a viral marketing campaign, a firm initially targets a small set of pioneers and hopes that they would influence a sizeable fraction of the population by diffusion of influence through the network. In general, any marketing campaign might fail to go viral in the first try. As such, it would be useful to have some guide to evaluate the effectiveness of the campaign and judge whether it is worthy of further resources, and in case the campaign has potential, how to hit upon a good pioneer who can make the campaign go viral. In this paper, we present a diffusion model developed by enriching the generalized random graph (a.k.a. configuration model) to provide insight into these questions. We offer the intuition behind the results on this model, rigorously proved in Blaszczyszyn&Gaurav(2013), and illustrate them here by taking examples of random networks having prototypical degree distributions - Poisson degree distribution, which is commonly used as a kind of benchmark, and Power Law degree distribution, which is normally used to approximate the real-world networks. On these networks, the members are assumed to have varying attitudes towards propagating the information. We analyze three cases, in particular - (1) Bernoulli transmissions, when a member influences each of its friend with probability p; (2) Node percolation, when a member influences all its friends with probability p and none with probability 1-p; (3) Coupon-collector transmissions, when a member randomly selects one of his friends K times with replacement. We assume that the configuration model is the closest approximation of a large online social network, when the information available about the network is very limited. The key insight offered by this study from a firm's perspective is regarding how to evaluate the effectiveness of a marketing campaign and do cost-benefit analysis by collecting relevant statistical data from the pioneers it selects. The campaign evaluation criterion is informed by the observation that if the parameters of the underlying network and the campaign effectiveness are such that the campaign can indeed reach a significant fraction of the population, then the set of good pioneers also forms a significant fraction of the population. Therefore, in such a case, the firms can even adopt the naive strategy of repeatedly picking and targeting some number of pioneers at random from the population. With this strategy, the probability of them picking a good pioneer will increase geometrically fast with the number of tries.
Databáze: OpenAIRE