Gait spectral index (GSI): a new quantification method for assessing human gait

Autor: Laszlo Schwirtlich, Rodolphe Héliot, Bernard Espiau, Christine Azevedo-Coste
Přispěvatelé: Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institute for Rehabilitation 'Dr Miroslav Zotovic' [Belgrade], Institute for Rehabilitation 'Dr Miroslav Zotovic', Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Rok vydání: 2010
Předmět:
Zdroj: Health
Health, SAGE Publications, 2010, 2 (1), pp.38-44. ⟨10.4236/health.2010.21007⟩
Health, 2010, 2 (1), pp.38-44. ⟨10.4236/health.2010.21007⟩
ISSN: 1949-5005
1949-4998
1363-4593
1461-7196
DOI: 10.4236/health.2010.21007
Popis: International audience; This paper introduces a simple, quantitative assessment tool to follow up the recovery of gait. Today, micro-electro-mechanical systems (MEMS) technology provides with small, simple, low-power consuming and easy to don and doff sensors. In our approach we have selected an accelerometer and introduced a new quantity that characterizes the gait pattern in the frequency domain, we term it Gait Spectral Index (GSI). GSI allows assessing gait quality and closely relates to the speed and cadence of gait (dynamics). We have tested the GSI approach to quantify the quality of the gait of healthy young and elderly, and poststroke hemiplegic individuals. We investigated the repeatability and coherence of GSI in healthy individuals (young and elderly) and contrasted this to the post-stroke hemiplegic individuals. We found that high correlation of the GSI with conventional gait parameters. This suggests that GSI, which needs only data from one accelerometer, could be an objective quantitative measure of the quality of the walking thereby a simple yet reliable measure of the recovery of function during neuronrehabilitation.
Databáze: OpenAIRE