Noninvasive Prototype for Type 2 Diabetes Detection

Autor: Luis Carlos Rodríguez Timaná, Adrián David Valencia Hernández, Javier Ferney Castillo García, Osamah Ibrahim Khalaf, Jesús Hamilton Ortiz
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Journal of Healthcare Engineering, Vol 2021 (2021)
Journal of Healthcare Engineering
ISSN: 2040-2309
Popis: The present work demonstrates the design and implementation of a human-safe, portable, noninvasive device capable of predicting type 2 diabetes, using electrical bioimpedance and biometric features to train an artificial learning machine using an active learning algorithm based on population selection. In addition, there is an API with a graphical interface that allows the prediction and storage of data when the characteristics of the person are sent. The results obtained show an accuracy higher than 90% with statistical significance ( p
Databáze: OpenAIRE