Algebraic geometry over free metabelian lie algebras. I. U-algebras and universal classes

Autor: I. V. Kazatchkov, Vladimir N. Remeslennikov, E. Yu. Daniyarova
Rok vydání: 2006
Předmět:
Zdroj: Journal of Mathematical Sciences. 135:3292-3310
ISSN: 1573-8795
1072-3374
Popis: This paper is the first in a series of three, the aim of which is to lay the foundations of algebraic geometry over the free metabelian Lie algebra $F$. In the current paper we introduce the notion of a metabelian Lie $U$-algebra and establish connections between metabelian Lie $U$-algebras and special matrix Lie algebras. We define the $\Delta $-localisation of a metabelian Lie $U$-algebra $A$ and the direct module extension of the Fitting's radical of $A$ and show that these algebras lie in the universal closure of $A$.
Comment: 34 pages
Databáze: OpenAIRE