HOW TO SHARE A CAKE WITH A SECRET AGENT
Autor: | Guillaume Chèze |
---|---|
Přispěvatelé: | Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
FOS: Computer and information sciences
Sociology and Political Science 05 social sciences General Social Sciences Construct (python library) partial information Measure (mathematics) fair division Combinatorics Computer Science - Computer Science and Game Theory [INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA] 0502 economics and business cake cutting algorithm 050206 economic theory Computer Science - Multiagent Systems Statistics Probability and Uncertainty General Psychology Fair division 050205 econometrics Mathematics Multiagent Systems (cs.MA) Computer Science and Game Theory (cs.GT) |
Zdroj: | Mathematical Social Sciences Mathematical Social Sciences, Elsevier, 2019, 100, pp.13-15 Mathematical Social Sciences, 2019, 100, pp.13-15 |
ISSN: | 0165-4896 |
Popis: | In this note we study a problem of fair division in the absence of full information. We give an algorithm that solves the following problem: n ≥ 2 persons want to cut a cake into n shares so that each person will get at least 1 ∕ n of the cake for his or her own measure, furthermore the preferences of one person are secret. How can we construct such shares? Our algorithm is a slight modification of the Even–Paz algorithm and allows to give a connected part to each agent. Moreover, the number of cuts used during the algorithm is optimal: O ( n log ( n ) ) . |
Databáze: | OpenAIRE |
Externí odkaz: |