Multigenerational prediction of genetic values using genome-enabled prediction
Autor: | Vinícius Quintão Carneiro, Cosme Damião Cruz, Gabi Nunes Silva, Isabela de Castro Sant' Anna, Marciane da Silva Oliveira, Moysés Nascimento, Ricardo Augusto Diniz Cabral Ferreira, Francyse Edith Chagas |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
0106 biological sciences
0301 basic medicine Linkage disequilibrium Research Validity Heredity Population genetics 01 natural sciences Linkage Disequilibrium Statistics education.field_of_study Multidisciplinary Genomics Research Assessment Phenotypes Phenotype Medicine Inbreeding Algorithms Genome Plant Research Article Genotyping Genotype Science Population Quantitative Trait Loci Outcrossing Quantitative trait locus Biology Research and Analysis Methods Genes Plant Polymorphism Single Nucleotide 03 medical and health sciences Genetics Selection Genetic education Molecular Biology Techniques Molecular Biology Evolutionary Biology Population Biology Models Genetic Biology and Life Sciences Reproducibility of Results Mating system Plant Breeding 030104 developmental biology Genetics Population Genetic Loci Population Genetics 010606 plant biology & botany |
Zdroj: | PLoS ONE PLoS ONE, Vol 14, Iss 1, p e0210531 (2019) |
ISSN: | 1932-6203 |
Popis: | The identification of elite individuals is a critical component of most breeding programs. However, the achievement of this goal is limited by the high cost of phenotyping and experimental research. A significant benefit of genomic selection (GS) to plant breeding is the identification of elite individuals without the need for phenotyping. This study aimed to propose different calibration strategies using combinations between generations from different genetic backgrounds to improve the reliability of GS and to investigate the effects of LD in different types of mating systems: outcrossing (An) self-pollination (Sn) and hybridization (Hn). For this purpose, we simulated a genome with 10 linkage groups. In each group, two QTL were simulated. Subsequently, an F2 population was created, followed by four generations of inbreeding (S1 to S4, H1 to H 4, A1, to A4,). Quantitative traits were simulated in three scenarios considering three degrees of dominance (d/a = 0, 0.5 and 1) and two broad sense heritabilities (h2 = 0.30 and 0.70), totaling six genetic architectures. To evaluate prediction reliability, a model (RR-BLUP) was trained in one generation and used to predict the following generations of mating systems. For example, the marker effects estimated in the F2 population were used to estimate the expected genomic breeding value (GEBV) in populations S1 through A4. The squared correlation between the GEBV and the true genetic value were used to measure the reliability of the predictions. Independently of the population used to estimate the marker effect, reliability showed the lowest values in the scenario where d = 1. For any scenario, the use of the multigenerational prediction methodology improved the reliability of GS. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |