Structural insights into serine-rich fimbriae from Gram-positive bacteria
Autor: | Stephen Matthews, Camille Tagliaferri, Jonathan D. Taylor, Meixian Zhou, Michael Nilges, Andrew Bodey, James A. Garnett, Benjamin Bardiaux, Peter Simpson, Ernesto Cota, Teresa Ruiz, James W. Murray, Rivka L. Isaacson, Wei Chao Lee, Yilmaz Alguel, Elizabeth B. Sawyer, Zhixiang Peng, Yuebin Li, Hui Wu, Julien R. C. Bergeron, Stéphanie Ramboarina |
---|---|
Přispěvatelé: | Centre for Structural Biology [London], Imperial College London, University of Alabama at Birmingham [ Birmingham] (UAB), King‘s College London, Bioinformatique Structurale, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), University of Vermont [Burlington], The authors would like to thank the Wellcome Trust (programme grant number 079819, equipment grant number 085464 to SM)andtheNationalInstitutesofHealth (grant R01DE017474 awarded to TR, and grants R01DE011000 and R01DE017954 to HW) for financial support. We would like to thank the beamline scientists at ID29 of the European Synchrotron Radiation Facility (ESRF) and X33 at the DORIS-III ring ofthe Deutsches Elektronen-Synchrotron (DESY). The authors are also indebted to Christina Redfield at Oxford University for the provision of 950 MHz instrument time. The 950 MHz NMR facility was funded by the Wellcome Trust Joint Infrastructure Fund (JIF) and the E.P. Abraham Fund., Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Models
Molecular MESH: Hydrogen-Ion Concentration Protein Conformation Fimbria MESH: Amino Acid Sequence Crystallography X-Ray Biochemistry Bacterial Adhesion Fimbriae Proteins MESH: Gram-Positive Bacteria Gram-positive Protein structure MESH: Protein Conformation MESH: Nuclear Magnetic Resonance Biomolecular Serine Staphylococci 0303 health sciences biology Streptococci Adhesion Hydrogen-Ion Concentration [SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] MESH: Mutagenesis Site-Directed Protein Structure and Folding Crystal Structure X-ray Scattering MESH: Models Molecular Streptococcus parasanguinis Protein subunit Molecular Sequence Data MESH: Streptococcus Gram-Positive Bacteria Microbiology Biofilm Formation MESH: Fimbriae Bacterial Fimbriae 03 medical and health sciences Scattering Small Angle Amino Acid Sequence MESH: Bacterial Adhesion MESH: Serine Cell adhesion Nuclear Magnetic Resonance Biomolecular Molecular Biology MESH: Scattering Small Angle 030304 developmental biology MESH: Molecular Sequence Data Bacteria 030306 microbiology Biofilm Streptococcus Cell Biology NMR biology.organism_classification MESH: Crystallography X-Ray MESH: Fimbriae Proteins Fimbriae Bacterial Mutagenesis Site-Directed |
Zdroj: | Journal of Biological Chemistry Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2010, 285 (42), pp.32446-57. ⟨10.1074/jbc.M110.128165⟩ Journal of Biological Chemistry, 2010, 285 (42), pp.32446-57. ⟨10.1074/jbc.M110.128165⟩ The journal of biological chemistry, 285: 32446-32457 The Journal of Biological Chemistry |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M110.128165⟩ |
Popis: | International audience; The serine-rich repeat family of fimbriae play important roles in the pathogenesis of streptococci and staphylococci. Despite recent attention, their finer structural details and precise adhesion mechanisms have yet to be determined. Fap1 (Fimbriae-associated protein 1) is the major structural subunit of serine-rich repeat fimbriae from Streptococcus parasanguinis and plays an essential role in fimbrial biogenesis, adhesion, and the early stages of dental plaque formation. Combining multidisciplinary, high resolution structural studies with biological assays, we provide new structural insight into adhesion by Fap1. We propose a model in which the serine-rich repeats of Fap1 subunits form an extended structure that projects the N-terminal globular domains away from the bacterial surface for adhesion to the salivary pellicle. We also uncover a novel pH-dependent conformational change that modulates adhesion and likely plays a role in survival in acidic environments. |
Databáze: | OpenAIRE |
Externí odkaz: |