Data integration for prediction of weight loss in randomized controlled dietary trials

Autor: Marlene Danner Dalgaard, Christina Warinner, Rasa Muktupavela, Lea Benedicte Skov Hansen, Torben Hansen, Henrik Vestergaard, Thomas Nordahl Petersen, Morten H. Sparholt, Vincent Aaskov, Cecilia Bang Jensen, Ramneek Gupta, Sara L. Garcia, Mads Vendelbo Lind, Lotte Lauritzen, Derya Aytan-Aktug, Oluf Pedersen, Josef Korbinian Vogt, Tine Rask Licht, Mette Kristensen, Karsten Kristiansen, Susanne Brix, Rikke Linnemann Nielsen, Henrik Munch Roager, Hanne Frøkiær, Marianne Helenius, Anders F. Christensen, Rikke J Gøbel, Martin Iain Bahl
Rok vydání: 2020
Předmět:
Male
0301 basic medicine
lcsh:Medicine
Physiology
Urine
Overweight
Machine Learning
0302 clinical medicine
Weight loss
Weight management
Computational models
Sequencing
Medicine
lcsh:Science
Randomized Controlled Trials as Topic
Whole Grains
Multidisciplinary
Postprandial Period
Data processing
Treatment Outcome
Female
Data integration
medicine.symptom
Microbial genetics
Genotype
Predictive medicine
030209 endocrinology & metabolism
Article
03 medical and health sciences
SDG 3 - Good Health and Well-being
Weight Loss
Metabolome
Humans
Metabolomics
business.industry
lcsh:R
Reproducibility of Results
DNA
Anthropometry
Omics
Individual level
Computer science
Gastrointestinal Microbiome
030104 developmental biology
ROC Curve
Computer modelling
lcsh:Q
business
Biomarkers
Diet Therapy
Genome-Wide Association Study
Zdroj: Scientific Reports, Vol 10, Iss 1, Pp 1-15 (2020)
Scientific Reports
Nielsen, R L, Helenius, M, Garcia, S L, Roager, H M, Aytan-Aktug, D, Hansen, L B S, Lind, M V, Vogt, J K, Dalgaard, M D, Bahl, M I, Jensen, C B, Muktupavela, R, Warinner, C, Aaskov, V, Gøbel, R, Kristensen, M B, Frøkiær, H, Sparholt, M H, Christensen, A F, Vestergaard, H, Hansen, T, Kristiansen, K, Brix, S, Petersen, T N, Lauritzen, L, Licht, T R, Pedersen, O & Gupta, R 2020, ' Data integration for prediction of weight loss in randomized controlled dietary trials ', Scientific Reports, vol. 10, 20103 . https://doi.org/10.1038/s41598-020-76097-z
Nielsen, R L, Helenius, M, Garcia, S L, Roager, H M, Aytan-Aktug, D, Hansen, L B S, Lind, M V, Vogt, J K, Dalgaard, M D, Bahl, M I, Jensen, C B, Muktupavela, R, Warinner, C, Aaskov, V, Gøbel, R, Kristensen, M, Frøkiær, H, Sparholt, M H, Christensen, A F, Vestergaard, H, Hansen, T, Kristiansen, K, Brix, S, Petersen, T N, Lauritzen, L, Licht, T R, Pedersen, O & Gupta, R 2020, ' Data integration for prediction of weight loss in randomized controlled dietary trials ', Scientific Reports, vol. 10, no. 1, 20103 . https://doi.org/10.1038/s41598-020-76097-z
ISSN: 2045-2322
DOI: 10.1038/s41598-020-76097-z
Popis: Diet is an important component in weight management strategies, but heterogeneous responses to the same diet make it difficult to foresee individual weight-loss outcomes. Omics-based technologies now allow for analysis of multiple factors for weight loss prediction at the individual level. Here, we classify weight loss responders (N = 106) and non-responders (N = 97) of overweight non-diabetic middle-aged Danes to two earlier reported dietary trials over 8 weeks. Random forest models integrated gut microbiome, host genetics, urine metabolome, measures of physiology and anthropometrics measured prior to any dietary intervention to identify individual predisposing features of weight loss in combination with diet. The most predictive models for weight loss included features of diet, gut bacterial species and urine metabolites (ROC-AUC: 0.84–0.88) compared to a diet-only model (ROC-AUC: 0.62). A model ensemble integrating multi-omics identified 64% of the non-responders with 80% confidence. Such models will be useful to assist in selecting appropriate weight management strategies, as individual predisposition to diet response varies.
Databáze: OpenAIRE