Effects of molsidomine on retinopathy and oxidative stress induced by radiotheraphy in rat eyes
Autor: | Serkan Ozen, Alaaddin Polat, Kevser Tanbek, Nihat Polat, Murat Atabey Özer, Azibe Yildiz, Kemal Ekici, Hakan Parlakpinar, Nigar Vardi |
---|---|
Přispěvatelé: | Fakülteler, Tıp Fakültesi, Cerrahi Tıp Bilimleri Bölümü, Göz Hastalıkları Ana Bilim Dalı, Özer, Murat Atabey |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Male
medicine.medical_specialty Molsidomine Urology Apoptosis medicine.disease_cause 03 medical and health sciences Cellular and Molecular Neuroscience chemistry.chemical_compound 0302 clinical medicine Retinal Diseases Malondialdehyde medicine Animals Nitric Oxide Donors Rats Wistar Head and neck Glutathione Peroxidase business.industry Superoxide Dismutase Radiation dose Neoplasms Experimental medicine.disease Immunohistochemistry Sensory Systems Rats Ophthalmology Radiation Injuries Experimental Oxidative Stress chemistry 030220 oncology & carcinogenesis Anesthesia Ionizing Radiation 030221 ophthalmology & optometry Lipid Peroxidation Antioxidant business Oxidative stress Retinopathy |
Popis: | Parlakpinar, Hakan/0000-0001-9497-3468; OZER, MURAT ATABEY/0000-0003-1807-6911 WOS: 000400977100023 PubMed: 27897441 Purpose: To determine the role of Molsidomine in preventing radiation-induced retinopathy after head and neck region irradiation of rats with a single radiation dose of 15 Gy. Materials and Methods: Male Wistar albino rats were randomly grouped into five as follows: (1) control group rats, which were applied through an intraperitoneal (i.p.) vehicle without radiotherapy (RT); (2) RT group rats received a single dose of 15 Gy irradiation and after daily 0.1 ml vehicle i.p. for 5 consecutive days; (3) molsidomine (MOL) group rats were treated for 5 consecutive days by i.p. with 4 mg/kg/day MOL; (4) irradiation plus MOL group (RT+MOL) rats received irradiation and after 10 days single daily i.p. dose of MOL for 5 consecutive days; and (5) MOL+RT group rats were treated for 5 consecutive days by i.p. with MOL before RT. At the end of the work the rats were sacrificed under high-dose anesthesia on the 16(th) day and then eye tissues were taken for histopathological, immunohistochemical (caspase-3), and biochemical analyses (superoxide dismutase [SOD], glutathione peroxidase [GSH], and malondialdehyde [MDA]). Results: RT significantly decreased both the content of GSH and the activity of SOD, and significantly increased the production of MDA level in the rat eyes. MOL treatment significantly increased the SOD and GSH levels and significantly decreased the MDA production (p < 0.0001). In addition, RT significantly increased the number of ganglion cells (GCs; p = 0.001), whereas especially pretreatment with MOL improved (p = 0.013). RT led to significant retinopathy formation, and MOL therapy protected the retina from radiation-induced retinopathy (p < 0.0001). Conclusions: We suggest that MOL is a powerful antioxidant and free radical scavenger that prevents the rat eyes from radiation-induced retinopathy and oxidative stress. |
Databáze: | OpenAIRE |
Externí odkaz: |