A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera
Autor: | Qingjiu Tian, Huanhuan Yuan, Zhenhai Li, Chengquan Zhou, Guijun Yang, Jibo Yue, Haikuan Feng, Xiuliang Jin |
---|---|
Přispěvatelé: | Beijing Research Center for Information Technology In Agriculture, Partenaires INRAE, Nanjing Agricultural University, Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), China Academy of Chinese Medicinal Sciences, National Key Research and Development Program 2016YFD0300603, Natural Science Foundation of China 41601346,41601369,41501481,61661136003,41771370,41471285,41471351 |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences
business.product_category 010504 meteorology & atmospheric sciences Science crop height 0211 other engineering and technologies photo numérique 02 engineering and technology 01 natural sciences modèle de surface modèle de culture crop surface model aboveground biomass LAI random forest regression partial least squares regression Partial least squares regression Leaf area index donnée hyperspectrale biomasse aérienne 021101 geological & geomatics engineering 0105 earth and related environmental sciences Digital camera Mathematics Remote sensing 2. Zero hunger Spectrometer régression aleatoire Hyperspectral imaging dégradation de la forêt 15. Life on land Agricultural sciences Random forest modèle de récolte General Earth and Planetary Sciences RGB color model Snapshot (computer storage) business Sciences agricoles |
Zdroj: | Remote Sensing Remote Sensing, MDPI, 2018, 10 (7), pp.1138. ⟨10.3390/rs10071138⟩ Remote Sensing, Vol 10, Iss 7, p 1138 (2018) Remote Sensing; Volume 10; Issue 7; Pages: 1138 Remote Sensing 7 (10), 1138. (2018) |
ISSN: | 2072-4292 |
DOI: | 10.3390/rs10071138⟩ |
Popis: | Timely and accurate estimates of crop parameters are crucial for agriculture management. Unmanned aerial vehicles (UAVs) carrying sophisticated cameras are very pertinent for this work because they can obtain remote-sensing images with higher temporal, spatial, and ground resolution than satellites. In this study, we evaluated (i) the performance of crop parameters estimates using a near-surface spectroscopy (350~2500 nm, 3 nm at 700 nm, 8.5 nm at 1400 nm, 6.5 nm at 2100 nm), a UAV-mounted snapshot hyperspectral sensor (450~950 nm, 8 nm at 532 nm) and a high-definition digital camera (Visible, R, G, B); (ii) the crop surface models (CSMs), RGB-based vegetation indices (VIs), hyperspectral-based VIs, and methods combined therefrom to make multi-temporal estimates of crop parameters and to map the parameters. The estimated leaf area index (LAI) and above-ground biomass (AGB) are obtained by using linear and exponential equations, random forest (RF) regression, and partial least squares regression (PLSR) to combine the UAV based spectral VIs and crop heights (from the CSMs). The results show that: (i) spectral VIs correlate strongly with LAI and AGB over single growing stages when crop height correlates positively with AGB over multiple growth stages; (ii) the correlation between the VIs multiplying crop height and AGB is greater than that between a single VI and crop height; (iii) the AGB estimate from the UAV-mounted snapshot hyperspectral sensor and high-definition digital camera is similar to the results from the ground spectrometer when using the combined methods (i.e., using VIs multiplying crop height, RF and PLSR to combine VIs and crop heights); and (iv) the spectral performance of the sensors is crucial in LAI estimates (the wheat LAI cannot be accurately estimated over multiple growing stages when using only crop height). The LAI estimates ranked from best to worst are ground spectrometer, UAV snapshot hyperspectral sensor, and UAV high-definition digital camera. |
Databáze: | OpenAIRE |
Externí odkaz: |