Knot segmentation in 3D CT images of wet wood
Autor: | Adrien Krähenbühl, Fleur Longuetaud, Bertrand Kerautret, Isabelle Debled-Rennesson, Frédéric Mothe |
---|---|
Přispěvatelé: | Applying Discrete Algorithms to Genomics and Imagery (ADAGIO), Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etudes des Ressources Forêt-Bois (LERFoB), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria), AgroParisTech-Institut National de la Recherche Agronomique (INRA) |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Source code
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging media_common.quotation_subject ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Scale-space segmentation 02 engineering and technology [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] Curvature Work related ACM: I.: Computing Methodologies/I.4: IMAGE PROCESSING AND COMPUTER VISION/I.4.10: Image Representation/I.4.10.4: Volumetric Knot (unit) Segmentation [SDV.SA.SF]Life Sciences [q-bio]/Agricultural sciences/Silviculture forestry Artificial Intelligence Curvature estimators ACM: I.: Computing Methodologies/I.4: IMAGE PROCESSING AND COMPUTER VISION/I.4.7: Feature Measurement/I.4.7.4: Size and shape 0202 electrical engineering electronic engineering information engineering Wood knot [INFO.INFO-IM]Computer Science [cs]/Medical Imaging Computer vision Mathematics media_common ComputingMethodologies_COMPUTERGRAPHICS X-ray CT scanner Parallelizable manifold business.industry Discrete geometry 020207 software engineering Image segmentation Mathematics::Geometric Topology ACM: I.: Computing Methodologies/I.4: IMAGE PROCESSING AND COMPUTER VISION/I.4.6: Segmentation [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] Signal Processing 020201 artificial intelligence & image processing Computer Vision and Pattern Recognition Artificial intelligence business Software |
Zdroj: | Pattern Recognition Pattern Recognition, Elsevier, 2014, 47 (12), pp.3852-3869. ⟨10.1016/j.patcog.2014.05.015⟩ Pattern Recognition, 2014, 47 (12), pp.3852-3869. ⟨10.1016/j.patcog.2014.05.015⟩ |
ISSN: | 0031-3203 |
DOI: | 10.1016/j.patcog.2014.05.015⟩ |
Popis: | International audience; This paper proposes a fully automatic method to segment wood knots from images obtained by an X-ray Computed Tomography scanner. Wood knot segmentation is known to be a difficult problem in the presence of sapwood because of the quite similar density of knots and wet sapwood. Classical segmentation techniques produce unsatisfactory results due to the very weak distinction between these two intensities. To overcome this limitation caused by physical characteristics, we propose to exploit the geometric properties of both the knot shapes and knot-sapwood interface. Based on previous work related to automatic knot detection, a new segmentation algorithm is proposed that uses a robust curvature estimation of 2D digital contours. The segmentation process is fast, easily parallelizable and produces better segmentation results than other state-of-the-art algorithms. It may be reproduced from the precise description given here or from source code available online. |
Databáze: | OpenAIRE |
Externí odkaz: |