Redox behavior of the SOFC electrode candidate NdBaMn2O5+: δ investigated by high-temperature in situ neutron diffraction: First characterisation in real time of an Ln BaMn2O5.5 intermediate phase

Autor: Ronald I. Smith, Mona Bahout, Serge Paofai, Gilles H. Gauthier, Vincent Dorcet, Florent Tonus, Stephen J. Skinner
Přispěvatelé: Imperial College London, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Universidad Industrial de Santander [Bucaramanga] (UIS), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Rennes-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Materials science
Hydrogen
Digital storage
Characterization
Neutron diffraction
Analytical chemistry
Structural phase transition
chemistry.chemical_element
High-temperature in situ
02 engineering and technology
010402 general chemistry
7. Clean energy
01 natural sciences
Oxygen
Thermal expansion
Atmospheric temperature
Tetragonal crystal system
Hydrogen storage
Mixed ionic and electronic conductors
Phase (matter)
General Materials Science
Real time observation
Oxygen vacancy orderings
Solid oxide fuel cells (SOFC)
Situ neutron powder diffractions
Electrodes
ComputingMilieux_MISCELLANEOUS
Virtual storage
Neutrons
Manganese
Renewable Energy
Sustainability and the Environment

High-temperature electrochemical
General Chemistry
[CHIM.MATE]Chemical Sciences/Material chemistry
Atmospheric temperature range
021001 nanoscience & nanotechnology
0104 chemical sciences
Crystallography
chemistry
Oxygen vacancies
13. Climate action
Oxygen intercalation
Reaction intermediates
0210 nano-technology
Zdroj: Journal of Materials Chemistry A
Journal of Materials Chemistry A, Royal Society of Chemistry, 2016, 4 (30), pp.11635--11647. ⟨10.1039/c6ta03224a⟩
Journal of Materials Chemistry A, 2016, 4 (30), pp.11635--11647. ⟨10.1039/c6ta03224a⟩
ISSN: 2050-7488
DOI: 10.1039/c6ta03224a⟩
Popis: The structural behavior of the tetragonal NdBaMn2O5 phase, a member of the family of A-site ordered layered manganites that have been recently suggested as possible mixed ionic and electronic conductors, has been investigated by means of in situ neutron powder diffraction. Considering applications in energy production and storage devices and use of NdBaMn2O5+δ as an electrode in symmetrical cells, the study was carried out in relevant atmosphere conditions, i.e. dilute hydrogen (wet and dry) and dry air in the temperature range 25–800 °C. Neutron data under flowing hydrogen allowed monitoring of the structural phase transition from the charge-ordered to the charge-disordered state as a function of temperature. Slow reduction of the fully oxidised phase, NdBaMn2O6, previously formed from quick oxidation of the pristine material, enabled real-time observation of the intermediate NdBaMn2O5.5 phase and its crystal characterization up to 700 °C in the course of its conversion to NdBaMn2O5. Oxygen vacancy ordering within the Nd layers of NdBaMn2O5.5 correlated with antiferrodistortive orbital ordering of the Jahn–Teller Mn3+ ion in the square pyramids and octahedra results in large thermal expansion and relatively slow anisotropic oxygen diffusion occurring in the NdO layer. The four heating/cooling cycles evidenced no oxygen miscibility between the three distinct phases detected in the NdBaMn2O5+δ system with δ ∼ 0, 0.5 and 1 and clearly demonstrated that reversible oxygen intercalation/deintercalation underpins the phase stability of the LnBaMn2O5+δ materials to redox cycling and to wet atmosphere in high temperature electrochemical devices.
Databáze: OpenAIRE