Elastic and cost-effective data carrier architecture for smart contract in blockchain

Autor: Khan Muhammad, Xiaolong Liu, Shyan-Ming Yuan, Jaime Lloret, Yu Wen Chen
Rok vydání: 2019
Předmět:
Zdroj: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
ISSN: 0167-739X
6170-2102
DOI: 10.1016/j.future.2019.05.042
Popis: [EN] Smart contract, which could help developer deploy decentralized and secure blockchain application, is one of the most promising technologies for modern Internet of things (IoT) ecosystem today. However, Ethereum smart contract lacks of ability to communicate with outside IoT environment. To enable smart contracts to fetch off-chain data, this paper proposes a data carrier architecture that is cost-effective and elastic for blockchain-enabled IoT environment. Three components, namely Mission Manager, Task Publisher and Worker, are presented in the data carrier architecture to interact with contract developer, smart contract, Ethereum node and off-chain data sources. Selective solutions are also proposed for filtering smart contract event and decoding event log to fit different requirements. The evaluation results and discussions show the proposed system will decrease about 20USD deployment cost in average for every smart contract, and it is more efficient and elastic compared with Oraclize Oracle data carrier service.
This work was supported by the fund of National Natural Science Foundation of China (Grants No. 61702102), Natural Science Foundation of Fujian Province, China (Grant No. 2018J05100), Foundation for Distinguished Young Scholars of Fujian Agriculture and Forestry University (Grant No. xjq201809), and in part by the MOST of Taiwan (Grant No. 107-2623-E-009-006-D).
Databáze: OpenAIRE