Metrological Analysis of Online Consumption Evaluation Influence Commodity Marketing Decision Based on Data Mining
Autor: | Xu-Yang Zhang, Lin-Fang Huang, Rong-Rong Guo, Jia-Ming Zhu, Yun-Hua Xu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Consumption (economics)
Operations research Computer science General Mathematics media_common.quotation_subject 05 social sciences Commodity Text segmentation General Engineering 02 engineering and technology Engineering (General). Civil engineering (General) Fuzzy logic Product (business) 0502 economics and business QA1-939 0202 electrical engineering electronic engineering information engineering 050211 marketing 020201 artificial intelligence & image processing Autoregressive integrated moving average TA1-2040 Cluster analysis Mathematics Reputation media_common |
Zdroj: | Mathematical Problems in Engineering, Vol 2020 (2020) |
ISSN: | 1024-123X |
DOI: | 10.1155/2020/9345901 |
Popis: | The data of reviews and ratings in the online market can provide guidance for company’s production and business activities. In this paper, firstly, we build a BP neural network model to help identify “useful consumer reviews.” Then, we use the fuzzy comprehensive evaluation method to identify the most successful and failing goods. Next, we achieve the time series prediction of product reputation by making use of ARIMA model. Finally, we use word segmentation and K-means clustering algorithm to determine whether stars and comments have radiation effects. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |