Tabu Search To Draw Evacuation Plans In Emergency Situations

Autor: S. Nasri, H. Bouziri
Jazyk: angličtina
Rok vydání: 2014
Předmět:
DOI: 10.5281/zenodo.1096232
Popis: Disasters are quite experienced in our days. They are caused by floods, landslides, and building fires that is the main objective of this study. To cope with these unexpected events, precautions must be taken to protect human lives. The emphasis on disposal work focuses on the resolution of the evacuation problem in case of no-notice disaster. The problem of evacuation is listed as a dynamic network flow problem. Particularly, we model the evacuation problem as an earliest arrival flow problem with load dependent transit time. This problem is classified as NP-Hard. Our challenge here is to propose a metaheuristic solution for solving the evacuation problem. We define our objective as the maximization of evacuees during earliest periods of a time horizon T. The objective provides the evacuation of persons as soon as possible. We performed an experimental study on emergency evacuation from the tunisian children’s hospital. This work prompts us to look for evacuation plans corresponding to several situations where the network dynamically changes.
{"references":["M. Anisuddin Nasir, L. Severien, and E. Dimogerontakis. (2014).Tabu\nSearch Optimization of Data Distribution in P2P Networks (Online).\nAvailable: http://web.ict.kth.se/ emmdim/docs/tabu.pdf","N. Baumann, and E. Kohler, \"Approximating earliest arrival flows with\nflow dependent transit times,\" Elsevier. Discrete Applied\nMathematics,vol. 155, pp. 161–171, Jan. 2007.","N. Baumann, \"Evacuation by Earliest Arrival Flows,\" Ph.D. dissertation, Fachb.Math.,Dortumund Univ., Aus Potsdam, 2007.","N. Baumann, and M. Skutella, \"Solving Evacuation Problems\nEfficiently: Earliest Arrival Flows with Multiple Sources,\" 47th Annual\nIEEE Symposiumon Foundations of Computer Science, FOCS 2006,\nBerkeley, CA,pp. 399–410, Oct. 2006.","R.E. Burkard, K. Dlaska, and B. Klinz.(2007, Feb.).Quickest Flow over\ntime. SIAM Journal on Computing (Online). 36(6), pp. 1600-1630.\nAvailable:http://researchweb.watson.ibm.com/people/l/lkf/papers/FS2.p\ndf","K. Bettina, and J. Gerhard, \"Minimum-cost dynamic flows: The series\nparallel case,\" Wiley Periodicals. Networks, vol. 43, pp. 153-162,\nMay.2004.","R. Challenger, C.W. Clegg, and M.A. Robinson, Understanding Crowd\nBehaviours, Practical Guidance and Lessons Identied. Researcher in\nOrganisational Psychology., London, TSO Rep. 1161–CB, 2010.","L.R. Ford, D.R. Fulkerson, and D.R, \"Constructing maximal dynamic\nflows from static flows\", Springer. Operations Research, vol. 6, pp. 419-\n433, May. 1958.","F. Glover. (1989, Summer.). Tabu Search Part I. Informs Journal on\ncomputing (Online). 1(3),pp. 190–206. Available:\nhttp://www.pubsonline.informs.org\n[10] D. Gale. (1959). Transient flows in networks. The Michigan\nMathematical Journal (Online). 6(1), pp. 59–63.Available:\nhttp://projecteuclid.org/euclid.mmj/1028998140\n[11] M. Gendreau, A. Hertz, G. Laporte. (1994, Oct.). A tabu search heuristic\nfor the vehicle routing problem. Management Science (Online). 40(10),\npp. 1276–1290. Available: http://www.jstor.org/stable/2661622\n[12] B. Hoppe, and E. Tardos. (2000, Feb.).The quickest transshipment\nproblem. Mathematics of Operations Research (Online). 25(1), pp. 36-\n62.Available: http://hdl.handle.net/1813/9000\n[13] H.W. Hamacher, and S.A. Tjandra. (2000). Mathematical modeling of\nevacuation problems: A state of the art. Pedestrian and Evacuation\nDynamics (Online). pp. 227–266. Available:\nhttps://kluedo.ub.unikl.de/files/1477/bericht24.pdf\n[14] E. Minieka, \"Maximal lexicographic and dynamic network\nflows,\"Informs. Operations Research, vol. 21, pp. 517-527, Apr. 1973.\n[15] F. Rita, \"An Evacuation Model for High Rise Buildings,\" in Proc.\n3thInter. Symposium in Fire Safety Science Conf. Scotland, 1991, pp.\n815–823.\n[16] Y. Shengxiang, J. Yong, and N. Trung.(2012, Oct.).Metaheuristics for\nDynamic Combinatorial Optimization Problems. Journal of Management\nMathematics (Online). 24, pp. 1–29. Available:\nhttp://www.tech.dmu.ac.uk/ syang/ECiDUE/Yang-IMAMAN13.pdf\n[17] P. Stefano, and M. Skutella, \"Shortest Path algorithms in transportation\nmodels: Classical and innovative aspects,\" C.N.R. Res. Lab., Pisa\nItalia.TR-97-06 (II), 1997.\n[18] S. Jayaswal, \"A Comparative Study of Tabu Search and Simulated\nAnnealing for Traveling Salesman Problem,\" Proj. Rep. Appl. Opt.\nUniv.Water., Canada. MSCI-703, (2008).\n[19] Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis with\nMathematical Programming Methods. Prentice-Hall, Englewood\nCliffs,New Jersey, 1985.\n[20] S.A. Tjandra, \"Dynamic network optimization with application to the\nevacuation problem,\" Ph.D. dissertation, Dept. Fach. Math.,\nKaiserslautern Univ.,Genehmigte, 2003.\n[21] R. Stefan, S. Heika, and S. Mechthid, \"Earliest arrival flows on series\nparallel graphs\" Wiley Online Library. Networks, vol. 57, pp. 169-173,\nMar. 2011.\n[22] W. Bein, and P. Brucker, \"Minimum cost flow algorithms for series\nparallel networks\" Elsevier. Discrete Applied Mathematics, vol. 10,\npp.117-124, Feb. 1985."]}
Databáze: OpenAIRE