On s-harmonic functions on cones

Autor: Giorgio Tortone, Susanna Terracini, Stefano Vita
Přispěvatelé: Terracini, S, Tortone, G, Vita, S
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Anal. PDE 11, no. 7 (2018), 1653-1691
Popis: We deal with non negative functions satisfying \[ \left\{ \begin{array}{ll} (-��)^s u_s=0 & \mathrm{in}\quad C, u_s=0 & \mathrm{in}\quad \mathbb{R}^n\setminus C, \end{array}\right. \] where $s\in(0,1)$ and $C$ is a given cone on $\mathbb R^n$ with vertex at zero. We consider the case when $s$ approaches $1$, wondering whether solutions of the problem do converge to harmonic functions in the same cone or not. Surprisingly, the answer will depend on the opening of the cone through an auxiliary eigenvalue problem on the upper half sphere. These conic functions are involved in the study of the nodal regions in the case of optimal partitions and other free boundary problems and play a crucial role in the extension of the Alt-Caffarelli-Friedman monotonicity formula to the case of fractional diffusions.
37 pages, 3 figures
Databáze: OpenAIRE