Characterizing Blood Clots Using Acoustic Radiation Force Optical Coherence Elastography and Ultrasound Shear Wave Elastography
Autor: | Matthew W. Urban, Mehdi Abbasi, Murthy N. Guddati, Hsiao Chuan Liu, Yong Hong Ding, Tuhin Roy, Margherita Capriotti, Waleed Brinjikji, Seán Fitzgerald, Karen M. Doyle, Yang Liu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Materials science
Erythrocytes Finite Element Analysis Article 030218 nuclear medicine & medical imaging 03 medical and health sciences Optical coherence elastography Elasticity Imaging Techniques 0302 clinical medicine medicine Humans Radiology Nuclear Medicine and imaging Thrombus Acoustic radiation force Stent retriever Shear wave elastography Fibrin Radiological and Ultrasound Technology business.industry Ultrasound Thrombosis Acoustics medicine.disease 030220 oncology & carcinogenesis Tomography business Tomography Optical Coherence Biomedical engineering circulatory and respiratory physiology |
Zdroj: | Phys Med Biol |
Popis: | Thromboembolism in a cerebral blood vessel is associated with high morbidity and mortality. Mechanical thrombectomy (MT) is one of the emergenc proceduresperformed to remove emboli. However, the interventional approaches such as aspiration catheters or stent retriever are empirically selected. An inappropriate selection of surgical devices can influence the success rate during embolectomy, which can lead to an increase in brain damage. There has been growing interest in the study of clot composition and using a priori knowledge of clot composition to provide guidance for an appropriate treatment strategy for interventional physicians. Developing imaging tools which can allow interventionalists to understand clot composition could affect management and device strategy. In this study, we investigated how clots of different compositions can be characterized by using acoustic radiation force optical coherence elastography (ARF–OCE) and compared with ultrasound shear wave elastography (SWE). Five different clots compositions using human blood were fabricated into cylindrical forms from fibrin-rich (21% red blood cells, RBCs) to RBC-rich (95% RBCs). Using the ARF–OCE and SWE, we characterized the wave velocities measured in the time-domain. In addition, the semi-analytical finite element model was used to explore the relationship between the phase velocities with various frequency ranges and diameters of the clots. The study demonstrated that the wave group velocities generally decrease as RBC content increases in ARF–OCE and SWE. The correlation of the group velocities from the OCE and SWE methods represented a good agreement as RBC composition is larger than 39%. Using the phase velocity dispersion analysis applied to ARF–OCE data, we estimated the shear wave velocities decoupling the effects of the geometry and material properties of the clots. The study demonstrated that the composition of the clots can be characterized by elastographic methods using ARF–OCE and SWE, and OCE demonstrated better ability to discriminate between clots of different RBC compositions, compared to the ultrasound-based approach, especially in clots with low RBC compositions. |
Databáze: | OpenAIRE |
Externí odkaz: |