Grothendieck’s inequalities for JB$^*$-triples: Proof of the Barton–Friedman conjecture

Autor: Ondřej F. K. Kalenda, Antonio M. Peralta, Hermann Pfitzner, Jan Hamhalter
Přispěvatelé: Czech Technical University in Prague (CTU), Department of Mathematical Analysis, Charles University., Charles University [Prague] (CU), Departamento de Analisis Matematico, Facultad de Ciencias, Universidad de Granada (UGR), Institut Denis Poisson (IDP), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO), Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO)
Rok vydání: 2020
Předmět:
Zdroj: Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, American Mathematical Society, 2021, 374 (2), pp.1327-1350. ⟨10.1090/tran/8227⟩
ISSN: 1088-6850
0002-9947
DOI: 10.1090/tran/8227
Popis: We prove that, given a constant $K> 2$ and a bounded linear operator $T$ from a JB$^*$-triple $E$ into a complex Hilbert space $H$, there exists a norm-one functional $\psi\in E^*$ satisfying $$\|T(x)\| \leq K \, \|T\| \, \|x\|_{\psi},$$ for all $x\in E$. Applying this result we show that, given $G > 8 (1+2\sqrt{3})$ and a bounded bilinear form $V$ on the Cartesian product of two JB$^*$-triples $E$ and $B$, there exist norm-one functionals $\varphi\in E^{*}$ and $\psi\in B^{*}$ satisfying $$|V(x,y)| \leq G \ \|V\| \, \|x\|_{\varphi} \, \|y\|_{\psi}$$ for all $(x,y)\in E \times B$. These results prove a conjecture pursued during almost twenty years.
Comment: 23 pages. We corrected a misprint, added some comments and precised one reference
Databáze: OpenAIRE