Cooperative motion of intrinsic and actuated semiflexible swimmers
Autor: | Isaac Llopis, C. P. Lowe, Ignacio Pagonabarraga, M. Cosentino Lagomarsino |
---|---|
Přispěvatelé: | Departament de Física Fonamental, Universitat de Barcelona, Génomique des Microorganismes (LGM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), DGCIYT of the Spanish Government [FIS2011-22603], DURSI [2009SGR-634], Simulation of Biomolecular Systems (HIMS, FNWI), Universitat de Barcelona |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Motilitat cel·lular
Physics Physics::Biological Physics genetic structures Hidrodinàmica [SDV]Life Sciences [q-bio] Flagel·lats Biophysics Cooperativity Nanotechnology Cell motility Mechanics Stress distribution Biofísica 01 natural sciences Instability Quantitative Biology::Cell Behavior 010305 fluids & plasmas Mecànica de fluids 0103 physical sciences Hydrodynamics Fluid mechanics 14. Life underwater 010306 general physics Flagellata |
Zdroj: | Physical Review E : Statistical, Nonlinear, and Soft Matter Physics Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2013, 87 (3), pp.32720. ⟨10.1103/PhysRevE.87.032720⟩ Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2013, 87 (3), pp.32720. ⟨10.1103/PhysRevE.87.032720⟩ Physical Review E, 87(3). American Physical Society Recercat. Dipósit de la Recerca de Catalunya instname Dipòsit Digital de la UB Universidad de Barcelona |
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/physreve.87.032720 |
Popis: | International audience; We examine the phenomenon of hydrodynamic-induced cooperativity for pairs of flagellated micro-organism swimmers, of which spermatozoa cells are an example. We consider semiflexible swimmers, where inextensible filaments are driven by an internal intrinsic force and torque-free mechanism (intrinsic swimmers). The velocity gain for swimming cooperatively, which depends on both the geometry and the driving, develops as a result of the near-field coupling of bending and hydrodynamic stresses. We identify the regimes where hydrodynamic cooperativity is advantageous and quantify the change in efficiency. When the filaments' axes are parallel, hydrodynamic interaction induces a directional instability that causes semiflexible swimmers that profit from swimming together to move apart from each other. Biologically, this implies that flagella need to select different synchronized collective states and to compensate for directional instabilities (e. g., by binding) in order to profit from swimming together. By analyzing the cooperative motion of pairs of externally actuated filaments, we assess the impact that stress distribution along the filaments has on their collective displacements. DOI: 10.1103/PhysRevE.87.032720 |
Databáze: | OpenAIRE |
Externí odkaz: |