Assessing the performance and microbial community of hybrid moving bed and conventional membrane bioreactors treating municipal wastewater
Autor: | João Paulo Bassin, André Aguiar Battistelli, Jossy Karla Brasil Bernardelli, Tiago José Belli, Flávio Rubens Lapolli, Rayra Emanuelly da Costa |
---|---|
Rok vydání: | 2017 |
Předmět: |
Nitrogen
0208 environmental biotechnology chemistry.chemical_element 02 engineering and technology Wastewater 010501 environmental sciences Membrane bioreactor Waste Disposal Fluid 01 natural sciences chemistry.chemical_compound Bioreactors Bioreactor Environmental Chemistry Hybrid reactor Ammonium Waste Management and Disposal 0105 earth and related environmental sciences Water Science and Technology Fouling Chemistry Microbiota Phosphorus Membrane fouling Environmental engineering Membranes Artificial General Medicine Pulp and paper industry 020801 environmental engineering |
Zdroj: | Environmental Technology. 40:716-729 |
ISSN: | 1479-487X 0959-3330 |
DOI: | 10.1080/09593330.2017.1404137 |
Popis: | A conventional (SB-CMBR) and a hybrid moving-bed (SB-HMBR) sequencing batch membrane bioreactor treating municipal wastewater were compared during their start-up in terms of organic matter and nutrient removal, membrane fouling characteristics and microbial community. Both systems exhibited similar COD, ammonium, total nitrogen (TN) and phosphorus removal efficiency, amounting up to 96%, 99%, 70% and 85%, respectively. Results from cycle tests revealed that the contribution of attached biomass to the overall ammonium removal in the hybrid reactor was marginal. Moreover, higher despite the similar phosphorus removal efficiency attained in both reactors, nitrate-dosing activity batch assays specifically revealed that the anoxic phosphate uptake rate (PUR) in the SB-HMBR was 1.71 times higher than in the SB-CMBR. Moreover, a higher frequency of Candidatus Accumulibacter-related polyphosphate-accumulating organisms was observed in the biofilm carriers of the hybrid reactor. These findings may explain why the overall PUR was almost 50% higher in the SB-HMBR. By operating the reactors in sequencing batch mode, adhesion of particles on the membrane surface was reduced while fouling was mitigated as compared to continuous MBR systems. Better filterability conditions with lower fouling rate were found in the SB-HMBR, important features of the hybrid reactor for reducing membrane cleaning-related energy demand. |
Databáze: | OpenAIRE |
Externí odkaz: |