A High-Order Discontinuous Galerkin Lagrange Projection Scheme for the Barotropic Euler Equations
Autor: | Christophe Chalons, Maxime Stauffert |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Discretization
Spacetime Mathematical analysis 010103 numerical & computational mathematics State (functional analysis) Acoustic wave 01 natural sciences Projection (linear algebra) Euler equations 010101 applied mathematics symbols.namesake Discontinuous Galerkin method Barotropic fluid symbols 0101 mathematics [MATH]Mathematics [math] Mathematics |
Zdroj: | Finite Volumes for Complex Applications VIII-Hyperbolic, Elliptic and Parabolic Problems Finite Volumes for Complex Applications VIII-Hyperbolic, Elliptic and Parabolic Problems, pp.63-70, 2017, ⟨10.1007/978-3-319-57394-6_7⟩ Springer Proceedings in Mathematics & Statistics ISBN: 9783319573939 |
Popis: | International audience; This work considers the barotropic Euler equations and proposes a high-order conservative scheme based on a Lagrange-Projection decomposition. The high-order in space and time are achieved using Discontinuous Galerkin (DG) and Runge-Kutta (RK) strategies. The use of a Lagrange-Projection decomposition enables the use of time steps that are not constrained by the sound speed thanks to an implicit treatment of the acoustic waves (Lagrange step), while the transport waves (Projection step) are treated explicitly. We compare our DG discretization with the recent one (Renac in Numer Math 1-27, 2016, [7]) and state that it satisfies important non linear stability properties. The behaviour of our scheme is illustrated by several test cases. |
Databáze: | OpenAIRE |
Externí odkaz: |