Low monoamine oxidase B in peripheral organs in smokers
Autor: | Millard Jayne, Colleen Shea, David J. Schlyer, Yu-Shin Ding, Youwen Xu, Noelwah Netusil, Gene-Jack Wang, Paul Vaska, Frank Telang, Richard A. Ferrieri, Jean Logan, Donald Warner, Nora D. Volkow, Victor Garza, Dinko Franceschi, Joanna S. Fowler, Pauline Carter, Payton King, Wei Zhu, Naomi Pappas, S. John Gatley, David Alexoff |
---|---|
Rok vydání: | 2003 |
Předmět: |
Monoamine Oxidase Inhibitors
Multidisciplinary Chemistry Monoamine oxidase Smoking Selegiline Biological Sciences Pharmacology Tobacco smoke Peripheral Nicotine chemistry.chemical_compound medicine Humans Monoamine oxidase B Neurotransmitter Monoamine Oxidase Carcinogen Tomography Emission-Computed medicine.drug |
Zdroj: | Proceedings of the National Academy of Sciences. 100:11600-11605 |
ISSN: | 1091-6490 0027-8424 |
DOI: | 10.1073/pnas.1833106100 |
Popis: | One of the major mechanisms for terminating the actions of catecholamines and vasoactive dietary amines is oxidation by monoamine oxidase (MAO). Smokers have been shown to have reduced levels of brain MAO, leading to speculation that MAO inhibition by tobacco smoke may underlie some of the behavioral and epidemiological features of smoking. Because smoking exposes peripheral organs as well as the brain to MAO-inhibitory compounds, we questioned whether smokers would also have reduced MAO levels in peripheral organs. Here we compared MAO B in peripheral organs in nonsmokers and smokers by using positron emission tomography and serial scans with the MAO B-specific radiotracers, l -[ 11 C]deprenyl and deuterium-substituted l -[ 11 C]deprenyl ( l -[ 11 C]deprenyl-D2). Binding specificity was assessed by using the deuterium isotope effect. We found that smokers have significantly reduced MAO B in peripheral organs, particularly in the heart, lungs, and kidneys, when compared with nonsmokers. Reductions ranged from 33% to 46%. Because MAO B breaks down catecholamines and other physiologically active amines, including those released by nicotine, its inhibition may alter sympathetic tone as well as central neurotransmitter activity, which could contribute to the medical consequences of smoking. In addition, although most of the emphases on the carcinogenic properties of smoke have been placed on the lungs and the upper airways, this finding highlights the fact that multiple organs in the body are also exposed to pharmacologically significant quantities of chemical compounds in tobacco smoke. |
Databáze: | OpenAIRE |
Externí odkaz: |