A categorification of the Alexander polynomial in embedded contact homology

Autor: Gilberto Spano
Přispěvatelé: Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Fourier [1973-2019] (IF [1973-2019]), Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Rok vydání: 2017
Předmět:
Zdroj: Algebr. Geom. Topol. 17, no. 4 (2017), 2081-2124
Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2017, 17 (4), pp.2081-2124. ⟨10.2140/agt.2017.17.2081⟩
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2017, 17 (4), pp.2081-2124
ISSN: 1472-2739
1472-2747
2081-2124
DOI: 10.2140/agt.2017.17.2081
Popis: Given a transverse knot $K$ in a three dimensional contact manifold $(Y,\alpha)$, in [13] Colin, Ghiggini, Honda and Hutchings define a hat version of embedded contact homology for $K$, that we call $\widehat{ECK}(K,Y,\alpha)$, and conjecture that it is isomorphic to the knot Floer homology $\widehat{HFK}(K,Y)$. We define here a full version $ECK(K,Y,\alpha)$ and generalise the definitions to the case of links. We prove then that, if $Y = S^3$, $ECK$ and $\widehat{ECK}$ categorify the (multivariable) Alexander polynomial of knots and links, obtaining expressions analogue to that for knot and link Floer homologies in the plus and, respectively, hat versions.
Comment: 48 pages, 4 figures
Databáze: OpenAIRE