The classification of irreducible admissible mod p representations of a p-adic GL n

Autor: Florian Herzig
Rok vydání: 2011
Předmět:
Zdroj: Inventiones mathematicae. 186:373-434
ISSN: 1432-1297
0020-9910
DOI: 10.1007/s00222-011-0321-z
Popis: Let F be a finite extension of Q_p. Using the mod p Satake transform, we define what it means for an irreducible admissible smooth representation of an F-split p-adic reductive group over \bar F_p to be supersingular. We then give the classification of irreducible admissible smooth GL_n(F)-representations over \bar F_p in terms of supersingular representations. As a consequence we deduce that supersingular is the same as supercuspidal. These results generalise the work of Barthel-Livne for n = 2. For general split reductive groups we obtain similar results under stronger hypotheses.
Comment: 55 pages, to appear in Inventiones Mathematicae
Databáze: OpenAIRE