Fate of Escherichia coli in Dialysis Device Exposed into Sewage Influent and Activated Sludge
Autor: | Porsry Ung, Reasmey Tan, Yasunori Tanji, Sokunsreiroat Yuk, Kazuhiko Miyanaga, Vannak Ann, Hasika Mith, Chanthol Peng |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Microbiology (medical) Dialysis device Time Factors 030106 microbiology Sewage Wastewater 010501 environmental sciences medicine.disease_cause 01 natural sciences 03 medical and health sciences Nutrient medicine Waste Management and Disposal Escherichia coli 0105 earth and related environmental sciences Water Science and Technology Escherichia coli K12 Chemistry business.industry Public Health Environmental and Occupational Health Membranes Artificial Pulp and paper industry Infectious Diseases Activated sludge Distilled water Microbial population biology bacteria Water Microbiology business Kidneys Artificial |
Zdroj: | Journal of Water and Health. 16(No. 3):380-390 |
Popis: | Tracing the fate of pathogens in environmental water, particularly in wastewater, with a suitable methodology is a demanding task. We investigated the fate of Escherichia coli K12 in sewage influent and activated sludge using a novel approach that involves the application of a biologically stable dialysis device. The ion concentrations inside the device could reach that of surrounding solution when it was incubated in phosphate buffered saline for 2 h. E. coli K12 above 107 CFU mL−1 (inoculated in distilled water, influent, activated sludge) were introduced into the device and incubated in influent and activated sludge for 10 days. Without indigenous microorganisms, E. coli K12 could survive even with the limited ions and nutrients concentrations in influent and activated sludge. E. coli K12 abundance in influent and activated sludge were reduced by 60 and 85%, respectively, after just 1 day. The establishment of microbial community in wastewater played an important role in reducing E. coli K12. Bacteriophage propagated in filtered influent or activated sludge when E. coli K12 was introduced, but not in raw influent or activated sludge. The methodology developed in this study can be applied in the actual environmental water to trace the fate of pathogens. |
Databáze: | OpenAIRE |
Externí odkaz: |