Fractal Kinetics of COVID-19 Pandemic

Autor: Ziff, Anna L., Ziff, Robert M.
Rok vydání: 2020
Předmět:
Zdroj: International Journal of Educational Excellence. 6:43-69
ISSN: 2373-5929
DOI: 10.18562/ijee.053
Popis: We give an update to the original paper posted on 2/17/20 -- now (as of 3/1/20) the China deaths are rapidly decreasing, and we find an exponential decline to the power law similar to the that predicted by the network model of \citet{vazquez_polynomial_2006}. At the same time, we see non-China deaths increasing rapidly, and similar to the early behavior of the China statistics. Thus, we see three stages of the spread of the disease in terms of number of deaths: exponential growth, power-law behavior, and then exponential decline in the daily rate. (Original abstract) The novel coronavirus (COVID-19) continues to grow rapidly in China and is spreading in other parts of the world. The classic epidemiological approach in studying this growth is to quantify a reproduction number and infection time, and this is the approach followed by many studies on the epidemiology of this disease. However, this assumption leads to exponential growth, and while the growth rate is high, it is not following exponential behavior. One approach that is being used is to simply keep adjusting the reproduction number to match the dynamics. Other approaches use rate equations such as the SEIR and logistical models. Here we show that the current growth closely follows power-law kinetics, indicative of an underlying fractal or small-world network of connections between susceptible and infected individuals. Positive deviations from this growth law might indicate either a failure of the current containment efforts while negative deviations might indicate the beginnings of the end of the pandemic. We cannot predict the ultimate extent of the pandemic but can get an estimate of the growth of the disease.
Databáze: OpenAIRE