Mapping class group representations from non-semisimple TQFTs

Autor: Nathan Geer, Ingo Runkel, Marco De Renzi, Bertrand Patureau-Mirand, Azat M. Gainutdinov
Přispěvatelé: Institute of Mathematics University of Zurich, Institut Denis Poisson (IDP), Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO), Department of Mathematics and Statistics [Logan], Utah State University (USU), Laboratoire de Mathématiques de Bretagne Atlantique (LMBA), Université de Brest (UBO)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS), Fachbereich Mathematik [Hamburg], Universität Hamburg (UHH), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO), University of Zurich, De Renzi, Marco
Rok vydání: 2021
Předmět:
Zdroj: HAL
ISSN: 1793-6683
0219-1997
DOI: 10.1142/s0219199721500917
Popis: In [arXiv:1912.02063], we constructed 3-dimensional Topological Quantum Field Theories (TQFTs) using not necessarily semisimple modular categories. Here, we study projective representations of mapping class groups of surfaces defined by these TQFTs, and we express the action of a set of generators through the algebraic data of the underlying modular category $\mathcal{C}$. This allows us to prove that the projective representations induced from the non-semisimple TQFTs of [arXiv:1912.02063] are equivalent to those obtained by Lyubashenko via generators and relations in [arXiv:hep-th/9405167]. Finally, we show that, when $\mathcal{C}$ is the category of finite-dimensional representations of the small quantum group of $\mathfrak{sl}_2$, the action of all Dehn twists for surfaces without marked points has infinite order.
41 pages, minor corrections, Section 2.4 and Appendix C added
Databáze: OpenAIRE