The TaskIntersection Constraint
Autor: | Nicolas Beldiceanu, Gilles Madi Wamba |
---|---|
Přispěvatelé: | Theory, Algorithms and Systems for Constraints (TASC), Laboratoire d'Informatique de Nantes Atlantique (LINA), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Département informatique - EMN, Mines Nantes (Mines Nantes)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Cominslab (projet EPOC), Claude-Guy Quimper |
Rok vydání: | 2016 |
Předmět: |
060201 languages & linguistics
Combinatorics Constraint (information theory) 0602 languages and literature 0202 electrical engineering electronic engineering information engineering scheduling constraint 020201 artificial intelligence & image processing 06 humanities and the arts 02 engineering and technology [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] Mathematics |
Zdroj: | Integration of AI and OR Techniques in Constraint Programming ISBN: 9783319339535 CPAIOR Lecture Notes in Computer Science 13th International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming-CPAIOR 2016 13th International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming-CPAIOR 2016, May 2016, Banff, Canada. pp.246-261, ⟨10.1007/978-3-319-33954-2_18⟩ |
DOI: | 10.1007/978-3-319-33954-2_18 |
Popis: | Given a sequence of tasks \(\mathcal {T}\) subject to precedence constraints between adjacent tasks, and given a set of fixed intervals \(\mathcal {I}\), the TaskIntersection \((\mathcal {T},\mathcal {I},o, inter )\) constraint restricts the overall intersection of the tasks of \(\mathcal {T}\) with the fixed intervals of \(\mathcal {I}\) to be greater than or equal (\(o=\) ‘\(\ge \)’) or less than or equal (\(o=\) ‘\(\le \)’) to a given limit \( inter \). We provide a bound(\(\mathbb {Z}\))-consistent cost filtering algorithm wrt the starts and the ends of the tasks for the TaskIntersection constraint and evaluate the constraint on the video summarisation problem. |
Databáze: | OpenAIRE |
Externí odkaz: |