PT -symmetric classical mechanics
Autor: | Carl M. Bender, Daniel W. Hook |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physics
Quantum Physics History Class (set theory) Separatrix FOS: Physical sciences Mathematical Physics (math-ph) Limiting Computer Science Applications Education Theoretical physics ComputingMethodologies_DOCUMENTANDTEXTPROCESSING Variety (universal algebra) Quantum Physics (quant-ph) Mathematical Physics |
Zdroj: | Journal of Physics: Conference Series. 2038:012003 |
ISSN: | 1742-6596 1742-6588 |
Popis: | This paper reports the results of an ongoing in-depth analysis of the classical trajectories of the class of non-Hermitian $PT$-symmetric Hamiltonians $H=p^2+ x^2(ix)^\varepsilon$ ($\varepsilon\geq0$). A variety of phenomena, heretofore overlooked, have been discovered such as the existence of infinitely many separatrix trajectories, sequences of critical initial values associated with limiting classical orbits, regions of broken $PT$-symmetric classical trajectories, and a remarkable topological transition at $\varepsilon=2$. This investigation is a work in progress and it is not complete; many features of complex trajectories are still under study. 21 pages, 22 figures, special issue |
Databáze: | OpenAIRE |
Externí odkaz: |