Dempster-Shafer fusion of evidential pairwise Markov chains

Autor: Mohamed El Yazid Boudaren, Wojciech Pieczynski
Přispěvatelé: Ecole Militaire Polytechnique [Alger] (EMP), Ministère de l'Enseignement Supérieur et de la Recherche Scientifique [Algérie] (MESRS)-Ministère de la Défense Nationale [Algérie], Traitement de l'Information Pour Images et Communications (TIPIC-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Communications, Images et Traitement de l'Information (CITI), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Markov process
02 engineering and technology
Computer Science::Artificial Intelligence
Markov model
Machine learning
computer.software_genre
symbols.namesake
Theory of evidence
Artificial Intelligence
Dempster–Shafer theory
0202 electrical engineering
electronic engineering
information engineering

Triplet Markov chains
Hidden Markov model
Mathematics
Markov chain
business.industry
Applied Mathematics
Variable-order Markov model
Maximum-entropy Markov model
020206 networking & telecommunications
Hidden Markov chains
Dempster-Shafer fusion
Computational Theory and Mathematics
Control and Systems Engineering
symbols
020201 artificial intelligence & image processing
Markov property
Artificial intelligence
business
computer
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Zdroj: IEEE Transactions on Fuzzy Systems
IEEE Transactions on Fuzzy Systems, Institute of Electrical and Electronics Engineers, 2016, 24 (6), pp.1598-1610. ⟨10.1109/TFUZZ.2016.2543750⟩
ISSN: 1063-6706
DOI: 10.1109/TFUZZ.2016.2543750⟩
Popis: International audience; Hidden Markov models have been extended in many directions, leading to pairwise Markov models, triplet Markov models, or discriminative random fields, all of which have been successfully applied in many fields covering signal and image processing. The Dempster-Shafer theory of evidence has also shown its interest in a wide range of situations involving reasoning under uncertainty and/or information fusion. There are, however, only few works dealing with both of these modeling tools simultaneously. The aim of this paper, which falls under this category of works, is to propose a general evidential Markov model offering wide modeling and processing possibilities regarding information imprecision, sensor unreliability and data fusion. The main interest of the proposed model relies in the possibility of achieving, easily, the Dempster-Shafer fusion without destroying the Markovianity
Databáze: OpenAIRE