Pointwise Bounds for Joint Eigenfunctions of Quantum Completely Integrable Systems

Autor: John A. Toth, Jeffrey Galkowski
Rok vydání: 2020
Předmět:
Zdroj: Communications in Mathematical Physics
ISSN: 1432-0916
0010-3616
DOI: 10.1007/s00220-020-03730-3
Popis: Let $(M,g)$ be a compact Riemannian manifold and $P_1:=-h^2\Delta_g+V(x)-E_1$ so that $dp_1\neq 0$ on $p_1=0$. We assume that $P_1$ is quantum completely integrable in the sense that there exist functionally independent pseuodifferential operators $P_2,\dots P_n$ with $[P_i,P_j]=0$, $i,j=1,\dots ,n$. We study the pointwise bounds for the joint eigenfunctions, $u_h$ of the system $\{P_i\}_{i=1}^n$ with $P_1u_h=E_1u_h+o(1)$. We first give polynomial improvements over the standard H\"ormander bounds for typical points in $M$. In two and three dimensions, these estimates agree with the Hardy exponent $h^{-\frac{1-n}{4}}$ and in higher dimensions we obtain a gain of $h^{\frac{1}{2}}$ over the H\"ormander bound. In our second main result, under a real-analyticity assumption on the QCI system, we give exponential decay estimates for joint eigenfunctions at points outside the projection of invariant Lagrangian tori; that is at points $x\in M$ in the "microlocally forbidden" region $p_1^{-1}(E_1)\cap \dots \cap p_n^{-1}(E_n)\cap T^*_xM=\emptyset.$ These bounds are sharp locally near the projection of the invariant tori.
Comment: 30 pages, 1 figure
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje