Ground, Proximal, and Satellite Remote Sensing of Soil Moisture
Autor: | Ebrahim Babaeian, Carsten Montzka, Morteza Sadeghi, Markus Tuller, Harry Vereecken, Scott B. Jones |
---|---|
Přispěvatelé: | John Wiley & Sons, Inc. |
Rok vydání: | 2019 |
Předmět: |
Proximal Sensing
010504 meteorology & atmospheric sciences Soil Moisture Climate Change 0207 environmental engineering Soil Science Climate change 02 engineering and technology 01 natural sciences 12. Responsible consumption Remote Sensing Hydrology (agriculture) 11. Sustainability ddc:550 Physical Sciences and Mathematics 020701 environmental engineering Water content 0105 earth and related environmental sciences Remote sensing 2. Zero hunger Plant Sciences Life Sciences 15. Life on land Electromagnetic Sensors 6. Clean water Geophysics 13. Climate action Remote sensing (archaeology) Satellite remote sensing Environmental science Hydrology |
Zdroj: | Plants, Soils, and Climate Faculty Publications T.W. "Doc" Daniel Experimental Forest Reviews of geophysics 57(2), 530-616 (2019). doi:10.1029/2018RG000618 |
ISSN: | 1944-9208 8755-1209 |
DOI: | 10.1029/2018rg000618 |
Popis: | Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security. |
Databáze: | OpenAIRE |
Externí odkaz: |