Predicting ARDS using the MIMIC II physiological database

Autor: Aline Taoum, Farah Mourad-Chehade, Ziad Fawal, Hassan Amoud
Přispěvatelé: Université Libanaise, Laboratoire Modélisation et Sûreté des Systèmes (LM2S), Institut Charles Delaunay (ICD), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2016
Předmět:
Zdroj: 2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET)
2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET), Nov 2016, Beirut, Lebanon. pp.47-51, ⟨10.1109/IMCET.2016.7777425⟩
DOI: 10.1109/imcet.2016.7777425
Popis: International audience; Acute Respiratory Distress Syndrome (ARDS) is a critical lung condition occurring in ill patients. Like many other cardiac disorders, ARDS can be assessed by physiological measurements. This study aims to predict ARDS in hospitalized patients using only physiological signals as heart rate and breathing rate. An approach based on hypothesis testing is developed to detect whether subjects' signals deviate from their initial states. The approach is applied on mechanically ventilated subjects in the MIMIC II database. As results, a sensitivity going up to 85% is achieved, with a prediction remaining possible before 24 hours of ARDS occurrence.
Databáze: OpenAIRE