On the structure of universal functions for classes $L^{p}[0,1)^{2},p\in (0,1)$ , with respect to the double Walsh system

Autor: M. G. Grigoryan, Artsrun Sargsyan
Rok vydání: 2019
Předmět:
Zdroj: Banach J. Math. Anal. 13, no. 3 (2019), 647-674
ISSN: 1735-8787
DOI: 10.1215/17358787-2019-0015
Popis: We address questions on the existence and structure of universal functions for classes $L^{p}[0,1)^{2}$ , $p\in (0,1)$ , with respect to the double Walsh system. It is shown that there exists a measurable set $E\subset [0,1)^{2}$ with measure arbitrarily close to $1$ , such that, by a proper modification of any integrable function $f\in L^{1}[0,1)^{2}$ outside $E$ , we can get an integrable function $\tilde{f}\in L^{1}[0,1)^{2}$ , which is universal for each class $L^{p}[0,1)^{2}$ , $p\in (0,1)$ , with respect to the double Walsh system in the sense of signs of Fourier coefficients.
Databáze: OpenAIRE