On t-dependent hyperbolic systems. Part 2
Autor: | Jens Wirth |
---|---|
Rok vydání: | 2017 |
Předmět: |
Applied Mathematics
010102 general mathematics Hyperbolic function Mathematical analysis MathematicsofComputing_NUMERICALANALYSIS Type (model theory) 01 natural sciences Stable manifold Inverse hyperbolic function 010101 applied mathematics Mathematics - Analysis of PDEs TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION FOS: Mathematics Asymptotology Applied mathematics 0101 mathematics Representation (mathematics) Hyperbolic partial differential equation Analysis Analysis of PDEs (math.AP) Hyperbolic equilibrium point Mathematics |
Zdroj: | Journal of Mathematical Analysis and Applications. 448:293-318 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2016.11.026 |
Popis: | We consider hyperbolic equations with time-dependent coefficients and develop an abstract framework to derive the asymptotic behaviour of the representation of solutions for large times. We are dealing with generic situations where the large-time asymptotics is of hyperbolic type. Our approach is based on diagonalisation procedures combined with asymptotic integration arguments. Comment: 29 pages |
Databáze: | OpenAIRE |
Externí odkaz: |