Spectral refinement on quasi-diagonal matrices
Autor: | Alain Largillier, Paulo B. Vasconcelos, Filomena D. d'Almeida, Mario Ahues |
---|---|
Rok vydání: | 2005 |
Předmět: |
Work (thermodynamics)
Numerical Analysis Algebra and Number Theory Iterative method Computation Mathematical analysis MathematicsofComputing_NUMERICALANALYSIS Eigenvalues Perturbation theory Quasi-diagonal matrices Spectral refinement Convergence (routing) Diagonal matrix Discrete Mathematics and Combinatorics Perturbed fixed slope Perturbation theory (quantum mechanics) Geometry and Topology Eigenvectors Eigenvalues and eigenvectors Eigenvalue perturbation Mathematics |
Zdroj: | Linear Algebra and its Applications. 401:109-117 |
ISSN: | 0024-3795 |
DOI: | 10.1016/j.laa.2003.12.004 |
Popis: | In several applications needing the numerical computation of eigenvalues and eigenvectors we deal with strongly quasi-diagonal matrices. An iterative explicit method for this kind of problem is proposed here. Its convergence is proved by means of an argument based on the perturbed fixed slope method. Numerical experiments complete this work. |
Databáze: | OpenAIRE |
Externí odkaz: |