Best Approximations by Vector-Valued Monotone Increasing or Convex Functions
Autor: | A. Nishi, Kazuaki Kitahara |
---|---|
Rok vydání: | 1993 |
Předmět: | |
Zdroj: | Journal of Mathematical Analysis and Applications. 172:166-178 |
ISSN: | 0022-247X |
DOI: | 10.1006/jmaa.1993.1014 |
Popis: | Let ( E , || · ||) be an ordered Banach space over the real held. Let BV be the space of all E -valued functions on a compact interval [ a , b ] ⊂ R which are of bounded variation. When BV is endowed with a norm || f || v = || f ( a )|| + v ( f ), f ∈ BV , where v ( f ) is a total variation of f on [ a , b ], we are concerned with the existence and uniqueness of best approximations by monotone increasing or convex functions of BV . |
Databáze: | OpenAIRE |
Externí odkaz: |