Best Approximations by Vector-Valued Monotone Increasing or Convex Functions

Autor: A. Nishi, Kazuaki Kitahara
Rok vydání: 1993
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications. 172:166-178
ISSN: 0022-247X
DOI: 10.1006/jmaa.1993.1014
Popis: Let ( E , || · ||) be an ordered Banach space over the real held. Let BV be the space of all E -valued functions on a compact interval [ a , b ] ⊂ R which are of bounded variation. When BV is endowed with a norm || f || v = || f ( a )|| + v ( f ), f ∈ BV , where v ( f ) is a total variation of f on [ a , b ], we are concerned with the existence and uniqueness of best approximations by monotone increasing or convex functions of BV .
Databáze: OpenAIRE