Linear expansions of correlated functions: Variational Monte Carlo case study
Autor: | Luca Bertini, G. Morosi, Dario Bressanini, Massimo Mella |
---|---|
Přispěvatelé: | Bertini, L, Bressanini, D, Mella, M, Morosi, G |
Rok vydání: | 1999 |
Předmět: |
Quantum Monte Carlo
Few-electron system Correlated wave function Condensed Matter Physics Atomic and Molecular Physics and Optics Exponential function Hybrid Monte Carlo Variational Monte Carlo Computational chemistry Dynamic Monte Carlo method Applied mathematics Physical and Theoretical Chemistry Linear combination Variance optimization Ansatz Mathematics Monte Carlo molecular modeling |
Zdroj: | Scopus-Elsevier |
ISSN: | 1097-461X 0020-7608 |
DOI: | 10.1002/(sici)1097-461x(1999)74:1<23::aid-qua3>3.0.co;2-2 |
Popis: | The relative performance of trial wave functions expressed as linear combination of correlated exponentials has been tested on a variety of systems. The results are compared against other correlated functions commonly used in the literature to assess the capabilities of the proposed ansatz. A possible departure from the simple exponential functional form used in previous works is discussed, along with its advantages and drawbacks. We also discuss how to implement an efficient optimization procedure for this correlated basis set. Q 1999 John Wiley & Sons, Inc. Int J Quant Chem 74: 23)33, 1999 |
Databáze: | OpenAIRE |
Externí odkaz: |