Representing interpolated free group factors as group factors

Autor: Sorin Popa, Dimitri Shlyakhtenko
Rok vydání: 2018
Předmět:
DOI: 10.48550/arxiv.1805.10707
Popis: We construct a one parameter family of ICC groups $\{G_t\}_{t>1}$, with the property that the group factor $L(G_t)$ is isomorphic to the interpolated free group factor $L(\mathbb F_t):=L(\mathbb{F}_2)^{1/\sqrt{t-1}}$, $\forall t$. Moreover, the groups $G_t$ have fixed cost $t$, are strongly treeable and freely generate any treeable ergodic equivalence relation of same cost.
Databáze: OpenAIRE