Representing interpolated free group factors as group factors
Autor: | Sorin Popa, Dimitri Shlyakhtenko |
---|---|
Rok vydání: | 2018 |
Předmět: |
Group factor
Group (mathematics) Mathematics - Operator Algebras 16. Peace & justice Condensed Matter::Mesoscopic Systems and Quantum Hall Effect Combinatorics Mathematics::Probability Free group FOS: Mathematics Discrete Mathematics and Combinatorics Equivalence relation Ergodic theory Geometry and Topology Operator Algebras (math.OA) Mathematics |
DOI: | 10.48550/arxiv.1805.10707 |
Popis: | We construct a one parameter family of ICC groups $\{G_t\}_{t>1}$, with the property that the group factor $L(G_t)$ is isomorphic to the interpolated free group factor $L(\mathbb F_t):=L(\mathbb{F}_2)^{1/\sqrt{t-1}}$, $\forall t$. Moreover, the groups $G_t$ have fixed cost $t$, are strongly treeable and freely generate any treeable ergodic equivalence relation of same cost. |
Databáze: | OpenAIRE |
Externí odkaz: |