On a Nonparametric Change Point Detection Model in Markovian Regimes

Autor: Ramsés H. Mena, Asael Fabian Martínez
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Bayesian Anal. 9, no. 4 (2014), 823-858
Popis: Change point detection models aim to determine the most probable grouping for a given sample indexed on an ordered set. For this purpose, we propose a methodology based on exchangeable partition probability functions, specifically on Pitman’s sampling formula. Emphasis will be given to the Markovian case, in particular for discretely observed Ornstein-Uhlenbeck diffusion processes. Some properties of the resulting model are explained and posterior results are obtained via a novel Markov chain Monte Carlo algorithm.
Databáze: OpenAIRE