Two types of interneurons in the mouse lateral geniculate nucleus are characterized by different h-current density

Autor: Maia Datunashvilli, Michael Leist, Mehrnoush Zobeiri, Ania Aissaoui, Thomas Budde, Hans-Christian Pape, Tatyana Kanyshkova, Maria Novella Romanelli, Manuela Cerina
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Scientific Reports
ISSN: 2045-2322
Popis: Although hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and the corresponding h-current (Ih) have been shown to fundamentally shape the activity pattern in the thalamocortical network, little is known about their function in local circuit GABAergic interneurons (IN) of the dorsal part of the lateral geniculate nucleus (dLGN). By combining electrophysiological, molecular biological, immunohistochemical and cluster analysis, we characterized the properties of Ih and the expression profile of HCN channels in IN. Passive and active electrophysiological properties of IN differed. Two subclasses of IN were resolved by unsupervised cluster analysis. Small cells were characterized by depolarized resting membrane potentials (RMP), stronger anomalous rectification, higher firing frequency of faster action potentials (APs), appearance of rebound bursting, and higher Ih current density compared to the large IN. The depolarization exerted by sustained HCN channel activity facilitated neuronal firing. In addition to cyclic nucleotides, Ih in IN was modulated by PIP2 probably based on the abundant expression of the HCN3 isoform. Furthermore, only IN with larger cell diameters expressed neuronal nitric oxide synthase (nNOS). It is discussed that Ih in IN is modulated by neurotransmitters present in the thalamus and that the specific properties of Ih in these cells closely reflect their modulatory options.
Databáze: OpenAIRE