Identification and decompositions in probit and logit models

Autor: Ronald L. Oaxaca, SeEun Jung, Chung Choe
Rok vydání: 2019
Předmět:
Zdroj: Empirical Economics. 59:1479-1492
ISSN: 1435-8921
0377-7332
Popis: Probit and logit models typically require a normalization on the error variance for model identification. This paper shows that in the context of sample mean probability decompositions, error variance normalizations preclude estimation of the effects of group differences in the latent variable model parameters. An empirical example is provided for a model in which the error variances are identified. This identification allows the effects of group differences in the latent variable model parameters to be estimated.
Databáze: OpenAIRE