SIRT7 regulates hepatocellular carcinoma response to therapy by altering the p53-dependent cell death pathway
Autor: | Steven A. Weinman, Jordan Voss, Jie Zhao, Josiah Cox, Abby Adams, Anusha Vittal, Brian Bridges, Ann L. Wozniak, Zhuan Li |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
0301 basic medicine
Male Cancer Research Mice 0302 clinical medicine TACE resistance Sirtuins HCC Gene knockdown Cell Death Liver Neoplasms Middle Aged lcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens Immunohistochemistry 3. Good health Gene Expression Regulation Neoplastic Oncology 030220 oncology & carcinogenesis Hepatocellular carcinoma Female Liver cancer medicine.drug Protein Binding Signal Transduction Programmed cell death Carcinoma Hepatocellular Deacetylation NOXA lcsh:RC254-282 03 medical and health sciences Cell Line Tumor medicine Carcinoma Animals Humans Doxorubicin Histone deacetylase neoplasms Aged Cell Proliferation Neoplasm Staging business.industry Research medicine.disease digestive system diseases Disease Models Animal 030104 developmental biology Apoptosis Drug Resistance Neoplasm Cancer research Neoplasm Grading Tumor Suppressor Protein p53 business |
Zdroj: | Journal of Experimental & Clinical Cancer Research : CR Journal of Experimental & Clinical Cancer Research, Vol 38, Iss 1, Pp 1-16 (2019) |
ISSN: | 1756-9966 0392-9078 |
Popis: | Background Optimal therapeutic strategies for hepatocellular carcinoma (HCC) patients are still challenging due to the high recurrence rate after surgical resection and chemotherapy resistance. Growing evidence shows that genetic and epigenetic alterations are involved in HCC progression and resistance to therapy, however the molecular mechanisms underlying resistance to therapy have not been fully understood. Methods Expression of SIRT7 in 17 paired paraffin-embedded HCC tissues and adjacent nontumoral liver tissues was examined by immunohistochemistry and Western blot. The mRNA expression of SIRT7 in 20 paired frozen HCC tissues and adjacent nontumoral liver tissues was analyzed by quantitative RT-PCR. The biologic consequences of overexpression and knockdown of SIRT7 in HCC therapy sensitivity were studied in vitro and in vivo. Interaction between SIRT7 and p53 were studied in HCC cell lines. Results SIRT7 expression was frequently upregulated in clinical HCC samples, and its expression was highly associated with TACE-resistance and poor survival (P = 0.008.) Depletion of SIRT7 from multiple liver cancer cell lines significantly increased doxorubicin toxicity while overexpression of SIRT7 largely abolished doxorubicin induced apoptosis. At the molecular level, we observed that SIRT7 interacts with and induces deacetylation of p53 at lysines 320 and 373. Deacetylated p53 showed significantly less affinity for the NOXA promoter and its transcription. In mouse xenografts, SIRT7 suppression increased doxorubicin induced p53 activation, inhibited tumor growth and induced apoptosis. Conclusion The newly identified SIRT7-p53-NOXA axis partially illustrates the molecular mechanism of HCC resistance to therapy and represents a novel potential therapeutic target for HCC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1246-4) contains supplementary material, which is available to authorized users. |
Databáze: | OpenAIRE |
Externí odkaz: |