Study of the formulation optimization and reusability of a MAGAT gel dosimeter

Autor: Jéssica Caroline Lizar, Fred Muller dos Santos, Leandro Federiche Borges, Thiago Dias Resende, Juliana Fernandes Pavoni
Rok vydání: 2019
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
ISSN: 1120-1797
DOI: 10.1016/j.ejmp.2019.05.018
Popis: Purpose This study aims to optimize the formulation of a methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride (MAGAT) gel dosimeter to achieve acceptable dosimetric characteristics and the lowest final costs. This study also evaluates the reusability of the dosimeter. Methods The MAGAT gel dosimeter formulation was optimized. Tetrakis (hydroxymethyl) phosphonium chloride (THPC) concentrations (2, 5, 8, 10, 20, and 65 mM), methacrylic acid (MA) concentrations (2.0, 2.5, 3.0, 3.5, and 4.0% w/w) and gelatin concentrations (4.36, 6.45, 8.36, and 10.45% w/w) were evaluated to provide an adequate dosimetric response. The final dosimeter formulation linearity and dose rate dependence were evaluated. The reutilization methodology of the optimized gel formulation, but containing 2 mM of THPC, which was previously irradiated with a dose of 2 Gy, is also presented. Results The optimized mass concentration of the dosimeter consists of 88.60% deionized water, 8.36% gelatin, 3.00% of MA and 0.04% THPC (5 mM). It presents a linear response for doses up to 10 Gy with a 1.16 Gy−1 s−1 sensitivity. A maximum sensitivity variation of less than 4.0% was found when varying the dose rate of the radiation beams from 300 to 500 cGy/min. It was possible to reuse the dosimeter, however the sensitivity decreased by 15% from the first to the second irradiation. Conclusions A low-cost MAGAT gel dosimeter with optimized formulation that responds to radiation in a dose range of 0 to 10 Gy with small dose-rate dependence is presented. The MAGAT gel can be reused after a 2 Gy irradiation.
Databáze: OpenAIRE