Polyhedral approximations of Riemannian manifolds
Autor: | PETRUNIN, Anton |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Mathematics - Differential Geometry
Turk. J. Math. 27 (2003) 173-188. Full text: pdf Other articles published in the same issue: Turk. J. Math. vol.27 iss.1 Differential Geometry (math.DG) Mathematics - Metric Geometry FOS: Mathematics Metric Geometry (math.MG) 53C20 53C23 52B70 Mathematics::Differential Geometry Computer Science::Databases |
Zdroj: | Volume: 27, Issue: 1 173-188 Turkish Journal of Mathematics |
ISSN: | 1300-0098 1303-6149 |
Popis: | We give a condition on the curvature tensors of Riemannian manifolds that admit Lipschitz approximation by polyhedral metrics with curvature bounded below or above. We show that this condition is also sufficient for the existence of local approximations. We conjecture that it is also sufficient for the global approximations and prove it in some special cases. an old paper with minor updates |
Databáze: | OpenAIRE |
Externí odkaz: |