The Sub-Riemannian Limit of Curvatures for Curves and Surfaces and a Gauss-Bonnet Theorem in the Group of Rigid Motions of Minkowski Plane with General Left-Invariant Metric

Autor: Haiming Liu, Jianyun Guan
Rok vydání: 2021
Předmět:
Zdroj: Journal of Function Spaces, Vol 2021 (2021)
ISSN: 2314-8888
2314-8896
Popis: The group of rigid motions of the Minkowski plane with a general left-invariant metric is denoted by E 1 , 1 , g λ 1 , λ 2 , where λ 1 ≥ λ 2 > 0 . It provides a natural 2 -parametric deformation family of the Riemannian homogeneous manifold Sol 3 = E 1 , 1 , g 1 , 1 which is the model space to solve geometry in the eight model geometries of Thurston. In this paper, we compute the sub-Riemannian limits of the Gaussian curvature for a Euclidean C 2 -smooth surface in E 1 , 1 , g L λ 1 , λ 2 away from characteristic points and signed geodesic curvature for the Euclidean C 2 -smooth curves on surfaces. Based on these results, we get a Gauss-Bonnet theorem in the group of rigid motions of the Minkowski plane with a general left-invariant metric.
Databáze: OpenAIRE